首页> 外文OA文献 >Localization of JPEG double compression through multi-domain convolutional neural networks
【2h】

Localization of JPEG double compression through multi-domain convolutional neural networks

机译:通过多域本地化JpEG双压缩   卷积神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

When an attacker wants to falsify an image, in most of cases she/he willperform a JPEG recompression. Different techniques have been developed based ondiverse theoretical assumptions but very effective solutions have not beendeveloped yet. Recently, machine learning based approaches have been started toappear in the field of image forensics to solve diverse tasks such asacquisition source identification and forgery detection. In this last case, theaim ahead would be to get a trained neural network able, given a to-be-checkedimage, to reliably localize the forged areas. With this in mind, our paperproposes a step forward in this direction by analyzing how a single or doubleJPEG compression can be revealed and localized using convolutional neuralnetworks (CNNs). Different kinds of input to the CNN have been taken intoconsideration, and various experiments have been carried out trying also toevidence potential issues to be further investigated.
机译:当攻击者想要伪造图像时,在大多数情况下,他/他将执行JPEG重新压缩。基于各种理论假设已经开发了不同的技术,但是还没有开发出非常有效的解决方案。近来,基于机器学习的方法已经开始出现在图像取证领域,以解决诸如采集源识别和伪造检测之类的各种任务。在这最后一种情况下,未来的目标将是获得训练有素的神经网络,该网络能够在给定待检查图像的情况下可靠地定位伪造区域。考虑到这一点,我们的论文通过分析如何使用卷积神经网络(CNN)揭示和定位单或双JPEG压缩,提出了朝这个方向迈出的一步。已考虑到CNN的各种输入,并且已经进行了各种实验,还试图证明潜在的问题有待进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号